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The integral in (8) may be, again, expressed in terms of elliptical integrals; however
the related formulas are not adduced here owing to their unwieldiness,

As a very simple particular case of the last problem we shall consider the expansion
of a circular cylinder which at the initial instant rotates as a solid at angular velocity
©. Calculations by formula (8) yield

Fy = F;, = (1 + Et¥)": sin [E-"»0 arctg (Es)]
1t is not difficult to compute the variation of the (distribution) density of the cloud

moment of momentum during expansion, For a Gaussian initial distribution of the gas
demsity p(r, 0) = (2n)-! exp (— 1/yr%)e we have

i | r? ridr
(zvy — Yv5) p (7, t) 2r dr = @ exp <— —z—m) A FERS

The total momentum J,., = 2@ obviously remains unchanged, The radius of the
layer carrying the maximum moment of momentum varies in time according to the law

rm = [3(1 + Et3)]'
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The solution of one-dimensional self-similar problems of shock wave convergence and
of expansion of gas-filled cavities is presented, Conditions of unlimited buildup is deri-
ved, two kinds of cavity expansion modes are shown to exist, and the similarity relation-
ship of auger-hole blasting in a uniformly-compacting granular medium and in a fissured
rock formation is established,

A class of one-dimensional self-similar problems exists for strong shock waves in gas:
concentrated explosion, buildup, short-duration impact, and other (solutions and extensive



886 Tu. S, Vakhrameey

references are given in [1, 2]). Dimensional considerations indicate that there must

exist a similar class of motions in the case of a porous substance consisting of incompres~
sible particles with "dry" friction, but capable of compacting & times under any pressure,
For example, the medium referred to in [3] reduces under high loads to such pattern,

Dry friction is, in fact, a property of soft soils [4] and shattered rock formations, Certain
of the results partly follow from more general (not self-similar) solutions [5, 6, 3],

1, Input equations, Behind a shock wave front bounding the region of motion
in problems of explosion and buildup the substance is incompressible, and for one-dimen-
sional flows the following equations are valid:

A v 4 op ( V(P—Py) __
or¥ == 0 R’ 1.2)
At the front
p=kon,  pr= Lo ud, R _ _k (1.3)

p—a—
dat k—1

Here t is the timne, r the distance from the center (axis, plane) of symmetry, R is
the coordinate of the front, p and p, are the final and initial densities, respectively,

v is the mass flow rate, p = p, and p,are pressures in the radial and angular (tangent-
ialydirections, respectively ; v = 2, 1, 0 for a sphere, a cylinder and a plane, respectively.
Subscript 1 relates to the front,

According to {5, 6] in a granular medium (in a limit stress condition) p, = ap, when
the motion is toward the center (axis of symmeuy)and p, = apr for a motion in the
reverse direction (for a sphere py = p,); and a = (1 — sin y) (1 + sin x)-!, where % is
the angle of internal friction,

We introduce dimensionless variables

y=r/R, P(y)=p/p, Vig)=v/v (1.4)
Wwe shall call the number » in relationships
Py~ R"("'%'V'i'i)‘ vy~ R“‘(“"F"‘?—l},f‘z, E ~ R (1.5)

the self-similarity index. In these relationships £ is the characteristic energy of motion
{the kinetic energy of the region of dimension R).

2., Shock wave buildup, After the change,to dimensionless variables (1,4)
and the elimination ot v by means of (1,2) and (1. 3), Eq. (1. 1) for p, = a~'p (motion
toward the ceater) becomes

dpP .1___'_1__ _13______k{n+1-v) vik—1) 21
E&‘+v( s ) y 2y’ * ot @4

For P (1) = 1 its integral is
— k +a'1 k(’l+i-—'\’) v{g=tm1) k(n+1—v) Joemy k~—1 -~ (99
P (1+a“ ;.'.(va'l——l)}y + 2(1—wva Yy’ 1+a‘1y (2-2)
The self-similarity index is found from the condition of boundedness of p at large y.
Equating to zero the coefficient of the first term, we obtain
_2(?-——3)4—&0(1-—-&)(\?-{»—1) (2.3)
ka (1 4 a)

n==

The complete solution is written as
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= A4 g g 4p (B - R ""] 2.4
p= iy Bt ke () —a = [ (2.4)
{o]= ( k —1) :i)"’ (i)“ R-(nveDe 2.5)
¢} T
The scale of the phenomenon is determined by4A (A4 = p for r = R = 1). Time to
the instant of focusing is related to R by the equality
2 (k = 1)p \*h p(n+vsa)e
— 1| = R 2.6
= 1= ey () @9
For all1 < k¥ < 0 and 0 < a < 1 the motion is accompanied by loss of energy. Dis-
sipation takes place throughout the volume owing to friction (in a sphere and a cylinder)
and at the wave front,
An unbounded increase of pressure and velocity takes place prior to focusing, if
ko = e 2.7
k> ko, EEWED (
For k < k, the solution defines a slowing down motion coming to a full stop att = t,.
The condition necessary for the existence of self-similar modes is in this case p = 0
for r > R (and not simply boundedness),
In the plane case (2, 7) is not satisfied, but trivial solution (2, 2) exists with undamped
motion: n = —1, P (y) = 1 and constant rate of collapse,

8. Displacement of medium by gas, Let the medium be compressed by
a piston which at instant ¢ — ;) = ¢ is at r =0, and whose subsequent motion is such
that the pressure on it is a power function of coordinate r,, An adiabatically expanding
gas may, for example, act as such piston, For the adiabatic exponent Y the pressure on
the piston is Py~ ry YD) (3.1)
Comparison of (3,1) and (1. 5) and the requirement that p, / p, = const yield
n=@w+1)—1 (3.2)
Let us calculate Py = p, / p,. At the piston
_r k=11
=4 =25
Substituting y = y, into (2,2) and ¢ for ¢~! (2 motion away from the center), after
simple transformations we obtain

it (S e 1 (A F - ttiman e o] o

It is seen that for given k, a and v the volume of P, diminishes with increasing r
(i. e, with increasing y). Letting P, = 0, we find the limit value of the index

va-1 —

—v+hH(d—a) , 2a(va—1) k- A\
no = —
= e )T Y @4
The index n, determines the attenuation of energy for v > v, where
=1 e
To + v 1 (3.5)

Thus ndepends on v and y only when y <y, , while for Y > ¥, it depends on ¥, a
and g (it is independent of V),
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We note that the limit self-similarity index also appears in problems concerning
shock waves in gas, There the limit modes cormrespond at rapid piston deceleration to
the case of constant energy, or, if the gas fills a half-space, to that of the short-duration
impact mode,

For any 1 < k < o0 and 0 < a < 1 the values of n, lie within the limits 0 < ny<v +
-+ 1. Maximum is attained at any @ when & — oo ,and forany ¥ whena =0, Ina
plane case friction is absent and ny = 1 for any .

The case of n, = v + 1 corresponds to energy attenuation with conservation of
momentum (in small angle sections), For ¥ — oo any interaction between sections is
absent owing to the zero-thickness of the built-up substance, while at ¢ = 0 this is due
to py =0.

The asymptotic expression of n, for a compacting fluid (¢ = 1) are for a sphere and
a cylinder, respectively n (b —1)'h 9
0 —

The corresponding expressions for n, (a) at the limit & — 1 are of the form
3 —4a (0< a < YYs)
"°={ 3—a)/(+a) (h<a<t)

Values of n, for several k and a in the spherical case are
k=1.2 1.1 1.06 1.02 1.0 —

n0=2(1—a>

no=2.55 2.48 2.42 2.36 2.0 (a=!/s)
ne=2.27 245 2.05 1.96 1.5 (a=1/3)
no=1.93 1.70 1.55 41.43 1.0 (a=1/q)
ne=1.02 0.74 0.54 0.36 0 (a=1)

we note that ny — 3 when & — oo ,and np = 3when a = (.

Equations (2. 5), (2.8), and p = p, P(y) constitute the complete solution of the problem,
P(y) is taken from (2,2) in which g is substituted for a-! ,

The class of self-similar solutions can be extended, if one considers the piston motion
of buildup in an inhomogeneous medium with py ~ r*, as was done in [7] with respect
10 gas,

4, Similarity transformation for suger-hole blasting, The self-
similarity index in piston problems is positive, For R — 0 the energy increases, since

E = BR™ (4.1)

Here B is a parameter which determines the scale of the phenomenon, The applica-
bility of (4. 1) is actually limited by the size of the initial bubble and the medium com-
pressibility at high pressures,

Let us consider the motion of a medium under the action of an explosive charge, In
the proximity of the products of explosion the medium can be compressible, but at lower
loads it conforms to the model considered here, Let the products of explosion at high
expansion be a gas with constant y. We shall establish the relation between the explo-
sion energy £, and parameter B in (4,1). By virtue of the gasdynamical similarity law
(neglecting thermal conductivity) we have at all stages of motion

1/(v4+1)

Here G is a certain dimensional parameter depending on the medium properties and
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on the kind of explosive, For an axisymmetric explosion E and E,are energies per unit

of length,
In the stage of self-similar motion (4,1) is valid and (C is a number)
1/(v+1 )
F (B2 _ CEMO (63)
GR G"R"
Hence
B = CEMMD “%.4)

Gn

The motion in an unbounded medium has been considered so far, Let the medium
border on a void with the interface defined by function r/ & = f, (8, ¢), where % is the
distance from the center of explosion in a given direction (e, g, vertical), The motion
takes place in a gravitational field with acceleration £, Emergence of the wave over
the surface will result in the ejection of substance:, followed by the fall of the latter and
the formation of a new profile, We shall consider the fallen substance as being com-
pacted,

In the self-similar mode the motion depends on two dimensionally independent para-
meters [1]. Hence the auger-hole blasting problem contains four defining dimensional
parameters: g, h, po and,e. g, e = Bh~" (a magnitude of the dimension of E;), We
combine these into a dimensionless parameter

h= 9
Taking into consideration (4, 4), we obtain
_CG™ (F, \B n vV+1(n+v+2)
*= "o (h“)’ B=t+33T. o="Fivy1 (4.6)

The final profile of the surface, when presented in the form r/ h = f, (8, @), must
depend on the dimensionless parameters p, k¥ and a (or %) of the problem and on the
dimensionless function f,.

This shows that for similar initial profiles the profiles of craters produced by an explo-
sion will be similar, if the explosion energy is proportional to the ath power of the depth
of the charge deposition, This result also holds when the density, porosity, and the coef-
ficient of internal friction vary away from the center of explosion, provided that the
similarity of their distribution remains unaltered at explosions of different magnitude,

The dependence of @ on k and « is weak, Since 0 << n < v + 1, hence

v+, <alv+2

At strong dissipation of energy ¢ is close to its lower limit,

In a moist soft medium & = 0.5 [4], while in a dry soft one and in a crushed rock forma~
tion friction ishigher. If 1/, < a < 1/, and1.02 < k < 1.2 (to which corresponds 1.43 <
< ny < 2.55),then for a spherical explosion with y >» v, we have 3.54 < o < 3.67.

For ny = 2 we have o = 3.6andy, = /5. If y < yo, thena = 3y + 1)/ y.

Since dry friction is defined by dimensionless coefficients, the derivation of the simi-
larity relationships was possible without detailed consideration of the unsymmetric mo-
tion in auger-hole blasting, The presence at this stage of complex dissipative processes
is taken into consideration in the results presented here.

On the assumnption of identical compacting ability of the medium at any pressure, the
deformation of the profile will, strictly speaking, continue after the fall and crumbling
of the soil. Crater profiles are similar at corresponding instants of time (e, g. at the
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instant of "landing" of the last grain of sand), When % — 1, any subsequent motion is
absent,

It is important 1o note that all conclusions about the existence of self-similar modes
in the ejection of a medium by gas and, as a consequence, the power law of similarity
expressed by E, ~h* remain valid for auger~hole blasting, even when p / p, and the
effective value of % behind the wave front are not constants, but functions of relative
strain, This follows from dimensional considerations, A similar model is valid, for exam-
ple, for approximately defining an explosion in a sirongly fissured rock taking into
account its gradual transformation into detritus, We would add that the existence of self-
similar modes with expansion of a small cavity does not necessarily require the presence
of a compression jump, An example of this is the expansion of a bubble in an incom-
pressible fluid (the second stage in the Rayleigh problem).

The author thanks E, I, Zababakhin for his useful advice,
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ON THE PROBLEM OF GLIDING OF A PLATE ON THE SURFACE

OF A HEAVY IDEAL LIQUID OF FINITE DEPTH
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The two~dimensional problem of the flow around an arbitrary contour floating on the
surface of a heavy ideal fluid of finite depth is considered. By using the results .of 1 - 3]
the problem mentioned is reduced by operational calculus methods in Sect, 1 to the
determination of the pressure on the contour from an integral equation of the first kind
with nonregular difference kernel of complex structure dependent on two dimensionless
parameters A and §.
The case of gliding of an inclined plate is studied in detail in Sects,2—~4, An asymp-



