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The integral in (8) may be, again, expressed in terms of elliptical integrah; however 
the related formulas are not adduced here owing to their unwieldiness. 

As a very simple particular case of the last problem we shall consider the expansion 
of a circular cylinder which at the initial instant rotates as a solid at angular velocity 
0. Calculations by formula (8) yield 

Frr = Fss = (1 + 2%)“~ cos [E-‘/t o arctg (Eht)] 
F 21 = F,, = (1 + Et2)‘h sin [E-‘/W arctg (E’At)] 

It is not difficult to compute the variation of the (distribution) density of the cloud 
moment of momentum during expansion. For a Gaussian initial distribution of the gas 
density p (r, 0) = (2n)-r exp (- r/2rs)e we have 

t% - yux)p(r, t)2mdr=oexp 
( 
-++) 

Ptir 
(1 + Ety 

The total momentum J.,., = 20 obviously remains unchanged. The radius of the 
layer carrying the maximum moment of momentum varies in time according to the law 

rm = [3(1 + @)]“a 
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FOR THE 

MEDIUM 

The solution of one-dimensional self-similar poblems of shock wave convergence and 
of expansion of gas-filled cavities is presented. Conditions of unlimited buildup is deri- 
ved, two kinds of cavity expansion modes are shown to exist, and the similarity relation- 
ship of auger-hole .blasting in a uniformly-compacting granular medium and in a fissured 
rock formation is established. 

A class of one-dimensional self-similar problems exists for strong shock waves in gas: 
concentrated explosion, buildup, short-duration impact, and other (solutions and extensive 
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references are given in p. 21). Dimensional considerations indicate that there must 

exist a similar class of motions in the case of a porous substance consisting of incompres- 
sib&! particles with “dry” friction, but capable of compactiag k rimes under any pressure. 
For example, the medium referred to in [s] reduces under high loads to such pattern. 
Dry Mctlon is, in fact, a property of soft soils [4] and shattered rock formations. Certain 
of the results partly follow from more general (not self-similar) solutions [S. 6, 33. 

1, Input oqu8tiQn.r Behfnd a shock wave front bounding the region of motion 
in problems of explosion and buildup the substance is incompressible, and for one-dimen- 
sional flows the following equations are valid : 

vr”I =z VlR’ ($2) 

At the front 
P=kpo, PI= &- VP, 

liR k 
x=mvU” (1.3) 

Mere t is the time, r the distance from the center (axis, plane) of symmetry, A is 

the coordinate of the front, p and p. are the final and initial densities, respectively, 
u is the mass flow rate, p vz pr and pep are pressures in the radial and angular (tangent- 
tal) directions, respectively : v = 2, 1, o for a sphere* a cyfinder and a plane, respectively. 
Subscript 1 relates to the front. 

Acoording to [S, 6] in a granular medium (in a limit stress condition) pr = UP, when 
the motion is toward the center (axis of symmetry) and p* 5= apr for a motion in the 
reverse direction (for a sphere ps = p& and a = (1 - sin x) (i + sin x)-l, where x is 
the angle of internal friction. 

We introduce dimensionless variables 

y=riR, p (!I) = P i PI, V&f)= Vi@, (1.4) 

We shall call the number n in ~~ti~~~ 
“Dt cy @“J*+t) v1 _ R-i”fv+l@, I;: _u R-” 1i.S) 

the self-similarity index. In these relationships E is the characteristic energy of motion 
(the kinetic energy of the region of dimension R). 

I), Shook wave buildup. After the change,to dimensionless variables (1.4) 
and the elimination of II by means of (1.2) and (1.31, Eq. (1.1) for P, = a-lp (motion 
toward the ceaerj becomes 

(SA) 

For JJ (1) = 1 its integral is 

pe c k + a-’ 
i + 0-l 

+ k (n + i - v) y~(a-~-~) + k (n + 1 -v) yr-~ _ k - 1 y-v 
% (w-1 - i) 1 2 (I - va-I) 

(2.21 
1+ a-l 

The self-similarity index is found from the condition of boundedness of p at large Y. 
Equating to zero the cafflcient of the first term, we obtain 

Tb=- Z(v - a) + ka 0 - a) iv f Q 
ka 0 + ~1 

(2.3) 

The complete solution is written as 
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A _ 
p- i+ll 

R-(n+v+l)[(i + ku) ($j-' -u (k - 1) (+)‘I 

1 v 1 = ( (k - 1) _/#’ (+)’ R++v+1)‘2 

(2.4) 

(2.5) 

The scale of the phenomenon is determined by A (A = p for P = R = 1). Time to 
the instant of focusing is related to R by the equality 

It-foI= kIn+2v+3)!(kAl)p)‘lrR(n+v+s)/2 (2.6) 

For all 1 < k < 03 and 0 < a < I the motion is accompanied by loss of energy. Dis- 

sipation takes place throughout the volume owing to friction (in a sphere and a cylinder) 

and at the wave frarJt. 
An unbounded increase of pressure and velocity takes place prior to focusing, if 

k>ko, k. = 
Y-U 

a2 (v + i) 
(2.7) 

For k < k, the solution defines a slowing down motion coming to a full stop at t = to. 

The condition necessary for the existence of self-similar modes is in this case P = I) 

for r 9 R (and not simply boundedness). 
In the plane case (2. ‘7) is not satisfied, but trivial solution (2.2) exists with undamped 

motion: a = -i, P (y) 3 1 and constant rate of collapse. 

3. Di~plrc~ment of medium by g&c, Let the medium be compressed by 
a piston which at instant t - to -_ 0 is at r =O, and whose subsequent motion is such 

that the pressure on it is a power function of coordinate r,. An adiabatically expanding 

gas may, for example, act as such piston. For the adiabatic exponent Y the pressure on 
the piston is pI _ rs -.W-l) (3.1) 

Comparison of (3.1) and (1.5) and the requirement that PI / p1 = const yield 

n = (v + 1) (Y - 1) (3.2) 

Let us calculate P, = p2 / pl. At the piston 

I? 

k - i’ l&+1) 
y2=-_= - 

( 1 k 

Substituting y = y2 into (2.2) and a for a-1 (a motion away from the center), after 
simple transformations we obtain 

v(1-a) 

pa(i+a) i$ V+‘=a+k 
1-W 

( j 
[ __(klc’)“l[~_‘“+:-_v~~)+.)j i 

It is seen that for given k, a and v the volume of P, diminishes with increasing 
(i. e. with increasing YI. Letting P* = 0, we find the limit value of the index 

no = ty + I) tie- a) + 
va-1 

2U (VU - I) 

i+0 (i+a)k [(j&j= -i]-1 

The index no determines the attenuation of energy for y > yo, where 

To=is_ no 
v+f 

(3.3) 

n 

(3.4) 

(3.5) 

Thus n depends on v and y only when y < yo, while for Y > y. it depends on v, a 
and k (it is independent of Y ). 
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We note that the limit self-similarity index also appears in problems concerning 
shooit waves in gas. There the limit modes correspond at rapid piston deceleration to 
the case of constant energy, or, if the gas fills a half-space, to that of the short-duration 
impact mode. 

For any 1 (, k < 00 and 0 < a < 1 the values of n,, lie within the limits 0 < s<v + 
+ 1. Maximum is attained at any a when k A 00 , and for any k when a = 0 . In a 
plane case friction is absent and n, = 1 for any k’. 

The case of II ,, = Y + i corresponds to energy attenuation with conservation of 
momentum (in small angle sections). For k - w any interaction between sections is 
absent owing to the zero-thidmess of the built-up substance, while at a = 0 this is due 
to p, =o. 

The asymptotic expression of no for a compacting fluid (a = 1) are for a sphere and 
a cylinder, respectively (k - i)‘” 2 

no = 
k% - k(k- i)“a ’ no = k In [k / (k - i)] 

The corresponding expressions for no (a) at the limit k --) 1 are of the form 

1 
3-4a f0 < a < ‘h) no = 
30--)/@+a) P/a<a<i) 

no = 2 (1 _ a) 

Values of no for several k and a in the spherical case are 

ko=1.2 1.1 1.05 1.02 1.0 - 
no = 2.55 2.48 2.42 2.36 2.0 (a = l/5) 
no= 2.27 2.15 2.05 1.96 1.5 (a==l/a) 
;~~:.~tg 1.70 1.55 1.43 1.0 (a = ‘/a) 

. - 0.74 0.54 0.36 0 (a= 1) 

wenotethat +,+3whenk+ca,and no=3when a=O. 

Equations (2.5). (2.6). and p = p1 P(y) constitute the complete solution of the problem. 
P(v) is talten from (2.2) in which a is substituted for a-1 . 

The class of self-similar solutions can be extended, if one considers the piston motion 
of buildup in an &homogeneous medium with p. - ry, as was done in g] with respect 
to gas. 

4, Sfmllrrity trrarformrtion for auger-ho10 blroting, The self- 
simiiarity index in piston problems is positive. For R -, 0 the energy increases. since 

E = BB- (4.1) 
Here B is a parameter which determines the scale of the phenomenon. The applica- 

bility of (4.1) is actually limited by the size of the initial bubble and the medium com- 
pressibility at high pressures. 

Jet us consider the motion of a medium under the action of an explosive charge. In 
the proximity of the products of explosion the medium can be compressible, but at lower 
loads it conforms to the model considered here. Let the products of explosion at high 
expansion be a gas with constant y. We shall establish the relation between the explo- 
sion energy ,Eo and parameter B in (4.1). By virtue of the gasdynamical similarity law 
(neglecting thermal conductivity) we have at all stages of motion 

(4.2) 

Here G is a certain dimensional parameter depending on the medium properties and 
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on the kind of explosive. For an axisymmetric explosion E and E,,are energies per unit 
of length. 

In the stage of self-similar motion (4.1) is valid and (C is a number) 

Hence 
B 

= c~ol+e+l) 

C” 

(4.3) 

(4.4) 

The motion in an unbounded medium has been considered so far. Let the medium 
border on a void with the interface defined by function r / h = fi (8, IJ), where h is the 
distance from the center of explosion in a given direction (e. g. vertical). The motion 
takes place in a gravitational field with acceleration g. Emergence of the wave over 
the surface will result in the ejection of substance. followed by the fall of the latter and 
the formation of a new profile. We shall consider the fallen substance as being com- 
pacted. 

In the self-similar mode the motion depends on two dimensionally independent para- 
meters 01. Hence the auger-hole blasting problem contains four defining dimensional 
parameters : g, h, p. and, e. g. e = Blrn (a magnitude of the dimension of E,). We 
combine these into a dimensionless parameter * 

P ” = 
poghvta 

14.5) 

Taking into consideration (4.4). we obtain 

(4-S) 

The final profile of the surface, when presented in the form r / h = fa (8, cp), must 
depend on the dimensionless parameters u, k and a (or X) of the problem and on the 
dimensionless function ii. 

This shows that for similar initial profiles the profiles of craters produced by an explo- 
sion will be similar, if the explosion energy is proportional to the ath power of the depth 
of the charge deposition. This result also holds when the density, porosity, and the coef- 
ficient of internal friction vary away from the center of explosion, provided that the 
similarity of their distribution remains unaltered at explosions of different magnitude. 

The dependence of a on k and a is weak. Since 0 < n < v + 1, hence 

v+%<a<v+2 

At strong dissipation of energy a is close to its lower limit. 
In a moist soft medium u z 0.5 [4], while in a dry soft one and in a crushed rock forma- 

tion friction is higher. If I/) < a < 1/Z and 1.02 < k < 1.2 (to which corresponds 1.43 < 
< no < 2.55),then for a spherical explosion with y > y. we have 3.54 < a < 3.67. 
For no = 2 we have a = 3.tiand y. = 6/s.If y < yo, then a = (3y + i) / v. 

Since dry friction is defined by dimensionless coefficients, the derivation of the simi- 
larity relationships was possible without detailed consideration of the unsymmetric mo- 
tion in auger-hole blasting. The pesence at this stage of complex dissipative processes 
is taken into consideration in the results presented here. 

On the assumption of identical compacting ability of the medium at any pressure, the 
deformation of the profile will, strictly speaking, continue after the fall and crumbling 
of the soil. Crater profiles are similar at corresponding instants of time (e. g. at the 
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instant of “landing” of the last grain of sand). When k + 1, any subsequem motion is 

absent, 
It is important to nom that all conol&om about the existence of self-sim$lar modes 

in the ejection of a medium by gas and, as a contrrqirence, the power iaw of similarity 
expregtd by E, -ha remain valid for auger-hole blasting, even when p / p. and the 
effective value of x behind the wave front are not constan& but functions of relative 
strain, This follows from dimensional considerations. A similar model is valid, for exam- 
ple, for ap~o~rna~~ d&n&g an explosion in a strot@y fissured rock taking into 
acwunt its gradw~l ~~f~rna~ into deuims. We would add that the existence of self- 
similar modes with expansion of a small cavity does not ~~r@lufre~puence 
of a commion jump. An example of this is the expansion of a bubbk in tin Worn- 
pressibk fluid (the second stage in the Raylnigh problem). 

The author thanks E. I, Zababakhin for hia useful advice. 
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The tw~dimensional probkm of the flow arourui an arbitrary contour fleating on the 
surface of a heavy ideal fluid of &rite depth ts oomidered. By using the results .of 0 - 33 
the pa&km ~nt~d is reduced by operational calculus methods in Sect. 1 to the 
determination of the pressure on the contour from an integral eguatiotr of the first kind 
with nwgulnr dif&wnce kernel of complex s~wcture dependent on two dimensionless 
parameters A and 6. 

The case of gliding of an inclined plate is studied in detail in Sects.2-4. An asymp 


